Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo.

نویسندگان

  • Yin Tintut
  • Sean Morony
  • Linda L Demer
چکیده

OBJECTIVE Osteoporosis is associated epidemiologically with atherosclerosis and hyperlipidemia. We previously found that atherogenic lipids regulate bone formation. To determine whether hyperlipidemia also affects bone resorption, we compared osteoclastogenesis in marrow preosteoclasts derived from hyperlipidemic versus control mice. METHODS Nonadherent marrow cells from low-density lipoprotein receptor-/- (LDLR-/-)and C57BL/6J mice were cultured with M-CSF and ligand for receptor activator of nuclear factor-kappaB (RANKL). Functional osteoclastic activity, measured as number of resorption pits, was significantly greater in 12-month-old LDLR-/-. Similar results were obtained in 5- and 10-month-old LDLR-/- versus C57BL/6J mice on a high-fat diet. Osteoclastic differentiation, indicated by tartrate resistant acid phosphatase (TRAP) activity, was significantly greater in the 12-month-old LDLR-/-, and there was a trend toward increased TRAP activity in LDLR-/- on a high-fat diet, at ages 5 and 10 months. Osteoclastic parameters correlated with total serum lipoproteins with a possible threshold effect. Osteoporotic human cortical bone stained positive for lipids in the perivascular space of Haversian canals by oil red O. The presence of lipid hydroperoxides was detected in bone marrow from hyperlipidemic mice. CONCLUSIONS Hyperlipidemia may contribute to osteoporosis via increased osteoclastic bone resorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ex vivo Expansion and Differentiation of Mesenchymal Stem Cells from Goat Bone Marrow

Objective(s) Mesenchymal stem cells (MSCs) from large animals as goat which is genetically more closely related to human have rarely been gained attentions. The present study tried to isolate and characterize MSCs from goat bone marrow. Materials and Methods Fibroblastic cells appeared in goat marrow cell culture were expanded through several subcultures. Passaged-3 cells were then different...

متن کامل

EXPANSION OF HUMAN CORD BLOOD PRIMITIVE PROGENITORS IN SERUM-FREE MEDIA USING HUMAN BONE MARROW MESENCHYMAL STEM CELLS

Ex vivo expansion of human umbilical cord blood cells (HUCBC) is explored by several investigators to enhance the repopulating potential of HUCBC. The proliferation and expansion of human hematopoietic stem cells (HSC) in ex vivo culture was examined with the goal of generating a suitable clinical protocol for expanding HSC for patient transplantation. Using primary human mesenchymal stem ...

متن کامل

Comparison of the Ex Vivo Expansion of UCB-Derived CD34+ in 3D DBM/MBA Scaffolds with USSC as a Feeder Layer

    Objective(s): Ex vivo expansion of hematopoitic stem cells is an alternative way to increase umbilical cord blood (UCB)-CD34+ cells for bone marrow transplantation. For this purpose demineralized bone matrix (DBM) and mineralized bone allograft (MBA) as two scaffolds based on bone matrix and stem cell niche, were simultaneously used to enhance the effect of human mesenchymal pro...

متن کامل

Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 24 2  شماره 

صفحات  -

تاریخ انتشار 2004